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As a unique class of stable multiply bonded compounds of heavy
group 14 elements, silicon, germanium, tin, and lead analogues of
ketenimines have attracted much attenfiorheir bonding char-
acteristics are often depicted as an intermediate between two
resonance structures, allenic and zwitterionic (Scheme 1) and may
be significantly modified by substituents on the terminal elements.

Scheme 1. Resonance Structures of R,ECNR' Species
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All known stable tin and lead analogues of ketenimines are not
characterized to be allenic or zwitterionic but an isocyanide complex
of the corresponding divalent species,R-.C=N—R', E = Sn
and Pby* Tokitoh and co-workers were the first to synthesize
silaketenimineda—1cwith bulky aryl substituentsand concluded
that 1a—1c are characterized as silylensocyanide complexes
rather than silaketenimines on the basis of spectroscopic data,

theoretical calculations, and their reactions. We wish herein to report Figure 1. Molecular structures of silaketenimin2a (top) and2b (bottom).

the synthesis and X-ray structural analysis of stable dialkyl- Thermal ellipsoids are shown in the 30% probability level. Hydrogen atoms

h . oo . . . are omitted for clarity. Selected bond lengths (A) and angles3a: Sil—
substituted silaketeniminga and2b, which are the first silaketen- <4 1.794(3), CEN1 1.203(3), N+ C18 1.406(3), Sit C1-N1 164.7(2),

imines with strong allenic character. C1-N1-C18 146.3(3), CSil—C2 113.38(12), C%Si1—C5 116.90(13),
o C2-Si1-C5 100.31(12), C+N1-C18-C19-37.7(6), CEN1-C18-C23
Me;Si,  SiMes 146.8(4).2b: Si1—C1 1.782(2), C+N1 1.210(3), N1+ C18 1.484(2), Sit
C1-N1 163.08(17), CN1-C18 130.69(18), CSil—C2 116.49(9),
Sionar Si=C=N==R C1-Si1-C5 114.37(9), C2Si1—C5 100.73(9).
Tbt Mes
_ Me;Si~ SiMey . .
1a, Ar = Tip; 1b, Ar = Tbt; A) and2b (1.782(2) A) are remarkably shorter than a typicatSi

Te, Ar = Mes® 2a, R=Dip; 2b, R =Ad single bond length (1.860 A), while being slightly longer thas Si

C double bond lengths of typical silaethenes (1:69F64 A)10
The C1EN1 distances ofa (1.203(3) A) and2b (1.210(3) A) are
much longer than the corresponding=R distances of aryl
isocyanides (ca. 1.160 A).The C—-N—C bond angles d?a (146.3-
(3)°) and 2b (130.69(18)) are considerably narrower than £80

Silaketenimine®a and2b were synthesized by the reactions of
isolable silylene3% with the corresponding isocyanides (eq 1).
Typically, treatment of3 with 1 equiv of 2,6-diisopropylphenyl
isocyanide (DipNC) in hexane at30 °C immediately gave a blue

solution. Removal of the solvent in vacuo and recrystallization from 2/ / < \ - o
hexane gav@a as blue crystals in 89% yield. Similarigh was indicating that the nitrogen atom is closely?dyybridized rather

obtained as red crystals in 85% yield by the reactiorafith than sp-hybridized. All these structural parameter@afind 2b

1-adamanty! isocyanide (AdNC). Boffa and2b are stable in the indicate that they are allenic rather than zwitterionic. Similar to
solid state below 0°C but dissociate to Silylene and the that of stable trisilaallerié and Silaalleneé\f; the Sil atom of2a

corresponding isocyanides in solution even at low temperatdres. @nd2b is highly pyramidalized and its SIC—N moiety adopts
considerably bent geometry; the sum of the bond angles around

Me;Si,  SiMe; the Sil atom and the SIC—N angle are 330.6(4) and 164.7{2)
) RNC (1eq) e and 331.6(3) and 163.08(T7jor 2a and 2b, respectively.
St hexane, -30 °C gz: E;ﬁ;ﬁf&f M Interestingly, the bonding characteristics2afand2b are quite
Me,Si’ SiMe, different from those of silaketeniminéds—1creported by Tokitoh
3 et al. Whereas no X-ray analysis has been reportetidord.c, these

compounds were concluded to be silylefisocyanide complexes
rather than silaketenimines. The theoreticat S{=N) distances
in model aryl-substituted silaketeniminda and4b is 1.882 and
t Department of Chemistry. 1.867 A at the B3LYP/6-31G(d) levér4 vyhich are much longer
*Research and Analytical Center for Giant Molecules. than those oRa and2b (Table 1). In addition, the CNC skeleton

Molecular structures d?aand2b determined by X-ray analysis
are shown in Figure $The Si1-C1 bond lengths o2a (1.794(3)
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Table 1. Selected Structural Parameters of Silaketenimines

distance/A angles/deg
compd Si—-C C-N Si-C-N C-N-C Os® Oc?
2  1.794(3) 1.203(3) 164.7(2)  146.3(3) +15.% +214.6
200 1.782(2) 1.210(3) 163.08(17) 130.69(19123.% +221.3
4ad 1.882 1.180 163.4 180.0 — -
4pd 1.867 1.184 159.4 175.0 - -
5a¢ 1.808 1.214 164.5 135.3 +3.1 +233.6
5a'e  1.877 1.184 162.0 178.2 —26.8 +186.4
5be 1.809 1.210 162.6 131.4 +6.4 +230.2

adsi anddc values were calculated at the GIAO/B3LYP/6-313(2df,p)//
B3LYP/6-314+G(d,p) level.” Determined by X-ray analysi§.ds; and ¢
values were measured in toluede-4 B3LYP/6-31G(d) level. See ref 5.
€ Geometry was optimized at the B3LYP/6-8G(d,p) level.

in 4aand4b is almost linear with bond angles of 180#nd 175.0.

In sharp contrast, DFT calculations féb as a model foRb at the
B3LYP/6-31+G(d,p) level reproduce the allenic character2bf
structural parameters for the optimized structurebbfare very
close to those for the X-ray structure2if. Interestingly N-phenyl
derivative5a shows two local minimaha and5a’, with different
rotational conformation of the phenyl rifgCompoundsd is only

0.7 kcal mof! more stable thada' but the bonding character of
5d is remarkably different from that da’; 5d is allenic while

5d" is zwitterionic. While the aromatic ring plane 8 is twisted

ca. 35° from the S=C—N plane, structural characteristics around
the SC—N skeleton of2a are well in accord with those &4d.

It is concluded that bonding characteristics of silaketenimines are
remarkably sensitive to the substituents:Aryl)diarylsilaketen-
imines are zwitterionic but N-alkyl)dialkylsilaketenimines are
allenic and N-aryl)dialkyl derivatives are allenic and zwitterionic
depending on the rotational conformation of taryl ring. Similar
electronic substituent effects on the structure of ketenimines have
been discussed by Wentrup et'@&l.
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The 2°Si and!3C resonances of unsaturated silicon and carbon
nuclei s; anddc) of 2aand2b appear at remarkably lower fields
compared to those dfa—1c; ds; values for2a and2b are +15.9
and+23.9, whileds; values forla—1c are—48 to—58 ppm? The
dc values for2a and 2b appeared at a highly deshielded region
(0c = 214 to 221) compared with those fba—1c. The NMR data
indicate the allenic character @a and2b in solutiont”

Compound=2a and 2b show twoxr — z* absorption bands at
233 K in hexan&; ima/nm (€): 647 (156) and 374 (6.5% 1)
for 2aand 465 (109) and 346 (5.65 1C®) for 2b. The longer and
shorter wavelength bands are assignable(&=C) — 7*(C=N)
and (Si=C) — 7*(Si=C) transitions, respectively, on the basis
of TD-DFT calculations foba and5b.'® Remarkable red-shift of
the longer wavelength band fdi-aryl-substituted silaketenimine
2a would be ascribed to lowering of the*(C=N) orbital level
due to significantt*(C=N)—z*(aryl) orbital interactiont®
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